Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Commun ; 15(1): 2025, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448455

RESUMO

The timing and fitness effect of somatic copy number alterations (SCNA) in cancer evolution remains poorly understood. Here we present a framework to determine the timing of a clonal SCNA that encompasses multiple gains. This involves calculating the proportion of time from its last gain to the onset of population expansion (lead time) as well as the proportion of time prior to its first gain (initiation time). Our method capitalizes on the observation that a genomic segment, while in a specific copy number (CN) state, accumulates point mutations proportionally to its CN. Analyzing 184 whole genome sequenced samples from 75 patients across five tumor types, we commonly observe late gains following early initiating events, occurring just before the clonal expansion relevant to the sampling. These include gains acquired after genome doubling in more than 60% of cases. Notably, mathematical modeling suggests that late clonal gains may contain final-expansion drivers. Lastly, SCNAs bolster mutational diversification between subpopulations, exacerbating the circle of proliferation and increasing heterogeneity.


Assuntos
Variações do Número de Cópias de DNA , Mutação Puntual , Humanos , Variações do Número de Cópias de DNA/genética , Mutação , Cognição , Exercício Físico
2.
Vaccines (Basel) ; 12(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38250876

RESUMO

Colorectal cancer (CRC) currently ranks as the third most common cancer in the United States, and its incidence is on the rise, especially among younger individuals. Despite the remarkable success of immune checkpoint inhibitors (ICIs) in various cancers, most CRC patients fail to respond due to intrinsic resistance mechanisms. While microsatellite instability-high phenotypes serve as a reliable positive predictive biomarker for ICI treatment, the majority of CRC patients with microsatellite-stable (MSS) tumors remain ineligible for this therapeutic approach. In this study, we investigated the role of centrosomal protein 55 (CEP55) in shaping the tumor immune microenvironment in CRC. CEP55 is overexpressed in multiple cancer types and was shown to promote tumorigenesis by upregulating the PI3K/AKT pathway. Our data revealed that elevated CEP55 expression in CRC was associated with reduced T cell infiltration, contributing to immune exclusion. As CRC tumors progressed, CEP55 expression increased alongside sequential mutations in crucial driver genes (APC, KRAS, TP53, and SMAD4), indicating its involvement in tumor progression. CEP55 knockout significantly impaired tumor growth in vitro and in vivo, suggesting that CEP55 plays a crucial role in tumorigenesis. Furthermore, the CEP55 knockout increased CD8+ T cell infiltration and granzyme B production, indicating improved anti-tumor immunity. Additionally, we observed reduced regulatory T cell infiltration in CEP55 knockout tumors, suggesting diminished immune suppression. Most significantly, CEP55 knockout tumors demonstrated enhanced responsiveness to immune checkpoint inhibition in a clinically relevant orthotopic CRC model. Treatment with anti-PD1 significantly reduced tumor growth in CEP55 knockout tumors compared to control tumors, suggesting that inhibiting CEP55 could improve the efficacy of ICIs. Collectively, our study underscores the crucial role of CEP55 in driving immune exclusion and resistance to ICIs in CRC. Targeting CEP55 emerges as a promising therapeutic strategy to sensitize CRC to immune checkpoint inhibition, thereby improving survival outcomes for CRC patients.

3.
Int J Med Sci ; 20(13): 1679-1697, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928874

RESUMO

Intervertebral disc degeneration (IVDD) is a prevalent and debilitating condition characterized by chronic back pain and reduced quality of life. Strontium ranelate (SRR) is a compound traditionally used for treating osteoporosis via activating TGF-ß1 signaling pathway. Recent studies have proved the anti-inflammatory effect of SRR on chondrocytes. Although the exact mechanism of IVDD remains unclear, accumulating evidences have emphasized the involvement of multifactorial pathogenesis including inflammation, oxidative stress damage, and etc. However, the biological effect of SRR on IVDD and its molecular mechanism has not been investigated. Firstly, this study proved the decreased expression of Transforming Growth Factor-beta 1(TGF-ß1) in degenerated human intervertebral disc tissues. Subsequently, we confirmed for the first time that SRR could promote cell proliferation, mitigate inflammation and oxidative stress in human nucleus pulposus cells in vitro via increasing the expression of TGF-ß1 and suppressing the Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-κB) pathway. The molecular docking result proved the interaction between SRR and TGF-ß1 protein. To further verify this interaction, gain- and loss- of function experiments were conducted. We discovered that both TGF-ß1 knockdown and overexpression influenced the activation of the NF-κB pathway. Taken together, SRR could mitigate IL-1ß induced-cell dysfunction in human nucleus pulposus cells by regulating TGF-ß1/NF-κB axis in vitro. Finally, the in vivo therapeutic effect of SRR on IVDD was confirmed. Our findings may contribute to the understanding of the complex interplay between inflammation and degenerative processes in the intervertebral disc and provide valuable insights into the development of targeted treatment-based therapeutics for IVDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/genética , Simulação de Acoplamento Molecular , Qualidade de Vida , Disco Intervertebral/patologia , Inflamação/patologia
4.
Science ; 381(6660): eadg4521, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37410869

RESUMO

Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses p53 signaling, and we show that TP53 mutations are mutually exclusive with 1q aneuploidy in human cancers. Thus, tumor cells can be dependent on specific aneuploidies, raising the possibility that these "aneuploidy addictions" could be targeted as a therapeutic strategy.


Assuntos
Proteínas de Ciclo Celular , Edição de Genes , Neoplasias , Oncogenes , Trissomia , Proteína Supressora de Tumor p53 , Humanos , Proteínas de Ciclo Celular/genética , Mutação , Neoplasias/genética , Neoplasias/terapia , Proteínas Proto-Oncogênicas/metabolismo , Edição de Genes/métodos , Proteína Supressora de Tumor p53/genética , Carcinogênese/genética
5.
Cell Cycle ; 22(10): 1196-1214, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37055945

RESUMO

Intervertebral disc degeneration (IVDD), a widely known contributor to low back pain (LBP), has been proved to be a global health challenging conundrum. Hesperidin (hesperetin-7-O-rutinoside, HRD) is a flavanone glycoside that belongs to the subgroup of citrus flavonoids with therapeutic effect on various diseases due to its anti-inflammatory, antioxidant properties. However, the effect of HRD on IVDD remains elusive. The human nucleus pulposus tissues were harvested for isolating human nucleus pulposus (HNP) cells to verify the expression of Nrf2. The biological effect of HRD on HNP cells were assessed in vitro, and the in vivo therapeutic effects of HRD were assessed in mice. Firstly, we found that the expression of Nrf2 was decreased with the progression of degeneration in degenerated human nucleus pulposus tissue. Subsequently, we confirmed that HRD could mitigate oxidative stress-induced ferroptosis in nucleus pulposus cells via enhancing the expression of Nrf2 axis and suppressing the NF-κB pathway to protect intervertebral disc from degeneration in vitro. Finally, the therapeutic effects of HRD were confirmed in vivo. The current study proved for the first time that HRD may protect HNP cells from degeneration by suppressing ferroptosis in an oxidative stress-dependent via enhancing the expression of Nrf2 and suppressing the NF-κB pathway. The evidence will provide a possible basis for future targeted treatment for IVDD.


Assuntos
Ferroptose , Hesperidina , Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Hesperidina/farmacologia , Hesperidina/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Estresse Oxidativo
6.
Redox Biol ; 62: 102707, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37099926

RESUMO

Increasing studies have reported that intervertebral disc degeneration (IVDD) is the main contributor and independent risk factor for low back pain (LBP), it would be, therefore, enlightening that investigating the exact pathogenesis of IVDD and developing target-specific molecular drugs in the future. Ferroptosis is a new form of programmed cell death characterized by glutathione (GSH) depletion, and inactivation of the regulatory core of the antioxidant system (glutathione system) GPX4. The close relationship of oxidative stress and ferroptosis has been studied in various of diseases, but the crosstalk between of oxidative stress and ferroptosis has not been explored in IVDD. At the beginning of the current study, we proved that Sirt3 decreases and ferroptosis occurs after IVDD. Next, we found that knockout of Sirt3 (Sirt3-/-) promoted IVDD and poor pain-related behavioral scores via increasing oxidative stress-induced ferroptosis. The (immunoprecipitation coupled with mass spectrometry) IP/MS and co-IP demonstrated that USP11 was identified to stabilize Sirt3 via directly binding to Sirt3 and deubiquitinating Sirt3. Overexpression of USP11 significantly ameliorate oxidative stress-induced ferroptosis, thus relieving IVDD by increasing Sirt3. Moreover, knockout of USP11 in vivo (USP11-/-) resulted in exacerbated IVDD and poor pain-related behavioral scores, which could be reversed by overexpression of Sirt3 in intervertebral disc. In conclusion, the current study emphasized the importance of the interaction of USP11 and Sirt3 in the pathological process of IVDD via regulating oxidative stress-induced ferroptosis, and USP11-mediated oxidative stress-induced ferroptosis is identified as a promising target for treating IVDD.


Assuntos
Ferroptose , Degeneração do Disco Intervertebral , Núcleo Pulposo , Sirtuína 3 , Humanos , Enzimas Desubiquitinantes/metabolismo , Ferroptose/genética , Glutationa/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Estresse Oxidativo/fisiologia , Dor/metabolismo , Sirtuína 3/metabolismo , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/uso terapêutico
7.
bioRxiv ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36711674

RESUMO

Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses TP53 signaling, and we show that TP53 mutations are mutually-exclusive with 1q aneuploidy in human cancers. Thus, specific aneuploidies play essential roles in tumorigenesis, raising the possibility that targeting these "aneuploidy addictions" could represent a novel approach for cancer treatment.

8.
STAR Protoc ; 4(1): 101927, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36586123

RESUMO

A common technique for uncovering intra-tumor genomic heterogeneity (ITH) is variant detection. However, it can be challenging to reliably characterize ITH given uneven sample quality (e.g., depth of coverage, tumor purity, and subclonality). We describe a protocol for calling point mutations and copy number alterations using sequencing of multiple related clinical patient samples across diverse tissue, optimizing for sensitivity with specificity. The ith.Variant pipeline can be run on single- or multi-region whole-genome and whole-exome sequencing. For complete details on the use and execution of this protocol, please refer to Sun et al. (2017).1.


Assuntos
Genômica , Neoplasias , Humanos , Genômica/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Variações do Número de Cópias de DNA/genética , Exoma
9.
PLoS Comput Biol ; 17(3): e1008838, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33730105

RESUMO

Can metastatic-primary (M-P) genomic divergence measured from next generation sequencing reveal the natural history of metastatic dissemination? This remains an open question of utmost importance in facilitating a deeper understanding of metastatic progression, and thereby, improving its prevention. Here, we utilize mathematical and computational modeling to tackle this question as well as to provide a framework that illuminates the fundamental elements and evolutionary determinants of M-P divergence. Our framework facilitates the integration of sequencing detectability of somatic variants, and hence, paves the way towards bridging the measurable between-tumor heterogeneity with analytical modeling and interpretability. We show that the number of somatic variants of the metastatic seeding cell that are experimentally undetectable in the primary tumor, can be characterized as the path of the phylogenetic tree from the last appearing variant of the seeding cell back to the most recent detectable variant. We find that the expected length of this path is principally determined by the decay in detectability of the variants along the seeding cell's lineage; and thus, exhibits a significant dependence on the underlying tumor growth dynamics. A striking implication of this fact, is that dissemination from an advanced detectable subclone of the primary tumor can lead to an abrupt drop in the expected measurable M-P divergence, thereby breaking the previously assumed monotonic relation between seeding time and M-P divergence. This is emphatically verified by our single cell-based spatial tumor growth simulation, where we find that M-P divergence exhibits a non-monotonic relationship with seeding time when the primary tumor grows under branched and linear evolution. On the other hand, a monotonic relationship holds when we condition on the dynamics of progressive diversification, or by restricting the seeding cells to always originate from undetectable subclones. Our results highlight the fact that a precise understanding of tumor growth dynamics is the sine qua non for exploiting M-P divergence to reconstruct the chronology of metastatic dissemination. The quantitative models presented here enable further careful evaluation of M-P divergence in association with crucial evolutionary and sequencing parameters.


Assuntos
Evolução Molecular , Genoma/genética , Metástase Neoplásica/genética , Neoplasias , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/classificação , Neoplasias/genética , Filogenia
10.
Nat Genet ; 52(8): 759-767, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32719518

RESUMO

Tumor initiation and progression are somatic evolutionary processes driven by the accumulation of genetic alterations, some of which confer selective fitness advantages to the host cell. This gene-centric model has shaped the field of cancer biology and advanced understanding of cancer pathophysiology. Importantly, however, each genotype encodes diverse phenotypic traits that permit acclimation to varied microenvironmental conditions. Epigenetic and transcriptional changes also contribute to the heritable phenotypic variation required for evolution. Additionally, interactions between cancer cells and surrounding stromal and immune cells through autonomous and non-autonomous signaling can influence competition for survival. Therefore, a mechanistic understanding of tumor progression must account for evolutionary and ecological dynamics. In this Perspective, we outline technological advances and model systems to characterize tumor progression through space and time. We discuss the importance of unifying experimentation with computational modeling and opportunities to inform cancer control.


Assuntos
Neoplasias/genética , Animais , Evolução Biológica , Progressão da Doença , Ecologia/métodos , Epigênese Genética/genética , Epigenômica/métodos , Humanos , Modelos Biológicos , Neoplasias/patologia , Transdução de Sinais/genética , Transcrição Gênica/genética
11.
Nat Genet ; 51(7): 1113-1122, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209394

RESUMO

Both the timing and molecular determinants of metastasis are unknown, hindering treatment and prevention efforts. Here we characterize the evolutionary dynamics of this lethal process by analyzing exome-sequencing data from 118 biopsies from 23 patients with colorectal cancer with metastases to the liver or brain. The data show that the genomic divergence between the primary tumor and metastasis is low and that canonical driver genes were acquired early. Analysis within a spatial tumor growth model and statistical inference framework indicates that early disseminated cells commonly (81%, 17 out of 21 evaluable patients) seed metastases while the carcinoma is clinically undetectable (typically, less than 0.01 cm3). We validated the association between early drivers and metastasis in an independent cohort of 2,751 colorectal cancers, demonstrating their utility as biomarkers of metastasis. This conceptual and analytical framework provides quantitative in vivo evidence that systemic spread can occur early in colorectal cancer and illuminates strategies for patient stratification and therapeutic targeting of the canonical drivers of tumorigenesis.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/secundário , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Neoplasias Hepáticas/secundário , Neoplasias Encefálicas/genética , Estudos de Casos e Controles , Neoplasias Colorretais/genética , Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Estudos Retrospectivos
12.
Nat Commun ; 10(1): 2433, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147552

RESUMO

The original version of this Article omitted from the Author Contributions statement that 'R.S. and J.G.R contributed equally to this work.' This has been corrected in both the PDF and HTML versions of the Article.

13.
Nat Commun ; 10(1): 657, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737380

RESUMO

Genomic changes observed across treatment may result from either clonal evolution or geographically disparate sampling of heterogeneous tumors. Here we use computational modeling based on analysis of fifteen primary breast tumors and find that apparent clonal change between two tumor samples can frequently be explained by pre-treatment heterogeneity, such that at least two regions are necessary to detect treatment-induced clonal shifts. To assess for clonal replacement, we devise a summary statistic based on whole-exome sequencing of a pre-treatment biopsy and multi-region sampling of the post-treatment surgical specimen and apply this measure to five breast tumors treated with neoadjuvant HER2-targeted therapy. Two tumors underwent clonal replacement with treatment, and mathematical modeling indicates these two tumors had resistant subclones prior to treatment and rates of resistance-related genomic changes that were substantially larger than previous estimates. Our results provide a needed framework to incorporate primary tumor heterogeneity in investigating the evolution of resistance.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Terapia Neoadjuvante/métodos , Receptor ErbB-2/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Teóricos , Sequenciamento do Exoma/métodos
14.
Cell ; 173(6): 1398-1412.e22, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29731168

RESUMO

Noncoding mutations in cancer genomes are frequent but challenging to interpret. PVT1 encodes an oncogenic lncRNA, but recurrent translocations and deletions in human cancers suggest alternative mechanisms. Here, we show that the PVT1 promoter has a tumor-suppressor function that is independent of PVT1 lncRNA. CRISPR interference of PVT1 promoter enhances breast cancer cell competition and growth in vivo. The promoters of the PVT1 and the MYC oncogenes, located 55 kb apart on chromosome 8q24, compete for engagement with four intragenic enhancers in the PVT1 locus, thereby allowing the PVT1 promoter to regulate pause release of MYC transcription. PVT1 undergoes developmentally regulated monoallelic expression, and the PVT1 promoter inhibits MYC expression only from the same chromosome via promoter competition. Cancer genome sequencing identifies recurrent mutations encompassing the human PVT1 promoter, and genome editing verified that PVT1 promoter mutation promotes cancer cell growth. These results highlight regulatory sequences of lncRNA genes as potential disease-associated DNA elements.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Genes myc , RNA Longo não Codificante/genética , Animais , Neoplasias da Mama/metabolismo , Sistemas CRISPR-Cas , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Cromatina , DNA de Neoplasias/genética , Elementos Facilitadores Genéticos , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Mutação , Transplante de Neoplasias , Regiões Promotoras Genéticas , RNA Longo não Codificante/metabolismo , Transcrição Gênica
15.
Nat Commun ; 9(1): 1048, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535388

RESUMO

Pulmonary large-cell neuroendocrine carcinomas (LCNECs) have similarities with other lung cancers, but their precise relationship has remained unclear. Here we perform a comprehensive genomic (n = 60) and transcriptomic (n = 69) analysis of 75 LCNECs and identify two molecular subgroups: "type I LCNECs" with bi-allelic TP53 and STK11/KEAP1 alterations (37%), and "type II LCNECs" enriched for bi-allelic inactivation of TP53 and RB1 (42%). Despite sharing genomic alterations with adenocarcinomas and squamous cell carcinomas, no transcriptional relationship was found; instead LCNECs form distinct transcriptional subgroups with closest similarity to SCLC. While type I LCNECs and SCLCs exhibit a neuroendocrine profile with ASCL1high/DLL3high/NOTCHlow, type II LCNECs bear TP53 and RB1 alterations and differ from most SCLC tumors with reduced neuroendocrine markers, a pattern of ASCL1low/DLL3low/NOTCHhigh, and an upregulation of immune-related pathways. In conclusion, LCNECs comprise two molecularly defined subgroups, and distinguishing them from SCLC may allow stratified targeted treatment of high-grade neuroendocrine lung tumors.


Assuntos
Carcinoma Neuroendócrino/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Tumores Neuroendócrinos/genética , Carcinoma de Pequenas Células do Pulmão/genética , Análise Mutacional de DNA , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Técnicas In Vitro , Neoplasias Pulmonares/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-28710260

RESUMO

The advent and application of next-generation sequencing (NGS) technologies to tumor genomes has reinvigorated efforts to understand clonal evolution. Although tumor progression has traditionally been viewed as a gradual stepwise process, recent studies suggest that evolutionary rates in tumors can be variable with periods of punctuated mutational bursts and relative stasis. For example, Big Bang dynamics have been reported, wherein after transformation, growth occurs in the absence of stringent selection, consistent with effectively neutral evolution. Although first noted in colorectal tumors, effective neutrality may be relatively common. Additionally, punctuated evolution resulting from mutational bursts and cataclysmic genomic alterations have been described. In this review, we contrast these findings with the conventional gradualist view of clonal evolution and describe potential clinical and therapeutic implications of different evolutionary modes and tempos.


Assuntos
Evolução Clonal , Neoplasias/genética , Proliferação de Células/genética , Humanos
17.
Nat Genet ; 49(7): 1015-1024, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28581503

RESUMO

Given the implications of tumor dynamics for precision medicine, there is a need to systematically characterize the mode of evolution across diverse solid tumor types. In particular, methods to infer the role of natural selection within established human tumors are lacking. By simulating spatial tumor growth under different evolutionary modes and examining patterns of between-region subclonal genetic divergence from multiregion sequencing (MRS) data, we demonstrate that it is feasible to distinguish tumors driven by strong positive subclonal selection from those evolving neutrally or under weak selection, as the latter fail to dramatically alter subclonal composition. We developed a classifier based on measures of between-region subclonal genetic divergence and projected patient data into model space, finding different modes of evolution both within and between solid tumor types. Our findings have broad implications for how human tumors progress, how they accumulate intratumoral heterogeneity, and ultimately how they may be more effectively treated.


Assuntos
DNA de Neoplasias/genética , Evolução Molecular , Células-Tronco Neoplásicas/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Alelos , Animais , Divisão Celular , Células Clonais , Cocarcinogênese/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Simulação por Computador , Progressão da Doença , Exoma/genética , Frequência do Gene , Variação Genética , Humanos , Masculino , Camundongos , Camundongos Nus , Modelos Biológicos , Mutação , Células-Tronco Neoplásicas/patologia , Seleção Genética , Fatores de Tempo , Carga Tumoral
18.
Biochim Biophys Acta Rev Cancer ; 1867(2): 109-126, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28274726

RESUMO

Cancer results from the acquisition of somatic alterations in a microevolutionary process that typically occurs over many years, much of which is occult. Understanding the evolutionary dynamics that are operative at different stages of progression in individual tumors might inform the earlier detection, diagnosis, and treatment of cancer. Although these processes cannot be directly observed, the resultant spatiotemporal patterns of genetic variation amongst tumor cells encode their evolutionary histories. Such intra-tumor heterogeneity is pervasive not only at the genomic level, but also at the transcriptomic, phenotypic, and cellular levels. Given the implications for precision medicine, the accurate quantification of heterogeneity within and between tumors has become a major focus of current research. In this review, we provide a population genetics perspective on the determinants of intra-tumor heterogeneity and approaches to quantify genetic diversity. We summarize evidence for different modes of evolution based on recent cancer genome sequencing studies and discuss emerging evolutionary strategies to therapeutically exploit tumor heterogeneity. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.


Assuntos
Biomarcadores Tumorais/genética , Transformação Celular Neoplásica/genética , Evolução Molecular , Aptidão Genética , Heterogeneidade Genética , Genética Populacional/métodos , Neoplasias/genética , Adaptação Fisiológica , Animais , Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Hereditariedade , Humanos , Modelos Genéticos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Linhagem , Fenótipo , Transdução de Sinais/genética , Fatores de Tempo
19.
Genome Biol ; 16: 7, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25650807

RESUMO

Genomic translocation events frequently underlie cancer development through generation of gene fusions with oncogenic properties. Identification of such fusion transcripts by transcriptome sequencing might help to discover new potential therapeutic targets. We developed TRUP (Tumor-specimen suited RNA-seq Unified Pipeline) (https://github.com/ruping/TRUP), a computational approach that combines split-read and read-pair analysis with de novo assembly for the identification of chimeric transcripts in cancer specimens. We apply TRUP to RNA-seq data of different tumor types, and find it to be more sensitive than alternative tools in detecting chimeric transcripts, such as secondary rearrangements in EML4-ALK-positive lung tumors, or recurrent inactivating rearrangements affecting RASSF8.


Assuntos
Pontos de Quebra do Cromossomo , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Fusão Oncogênica , Transcriptoma , Translocação Genética , Sequência de Bases , Linhagem Celular Tumoral , Análise por Conglomerados , Biologia Computacional/métodos , Inativação Gênica , Genômica , Humanos , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Supressoras de Tumor/genética
20.
Nat Commun ; 5: 3518, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24670920

RESUMO

Pulmonary carcinoids are rare neuroendocrine tumours of the lung. The molecular alterations underlying the pathogenesis of these tumours have not been systematically studied so far. Here we perform gene copy number analysis (n=54), genome/exome (n=44) and transcriptome (n=69) sequencing of pulmonary carcinoids and observe frequent mutations in chromatin-remodelling genes. Covalent histone modifiers and subunits of the SWI/SNF complex are mutated in 40 and 22.2% of the cases, respectively, with MEN1, PSIP1 and ARID1A being recurrently affected. In contrast to small-cell lung cancer and large-cell neuroendocrine lung tumours, TP53 and RB1 mutations are rare events, suggesting that pulmonary carcinoids are not early progenitor lesions of the highly aggressive lung neuroendocrine tumours but arise through independent cellular mechanisms. These data also suggest that inactivation of chromatin-remodelling genes is sufficient to drive transformation in pulmonary carcinoids.


Assuntos
Tumor Carcinoide/genética , Montagem e Desmontagem da Cromatina/genética , Neoplasias Pulmonares/genética , Mutação , Adolescente , Adulto , Idoso , Sequência de Bases , Tumor Carcinoide/patologia , Mapeamento Cromossômico , Variações do Número de Cópias de DNA , Exoma/genética , Feminino , Dosagem de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA